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The aim of this paper is twofold. First we want to show how a duality relation
provides a vehicle to deduce strong summability and approximation properties of
Fourier series from some basic inequalities, called Sidon type inequalities. This way
the technicalities concerning several strong summability and approximation
problems can be reduced to proving such inequalities. On the other hand, we will
isolate two properties that induce the sharpest version of these inequalities for a
number of orthonormal systems, find their counterparts in terms of strong
approximation, and show some of their consequences. We note that these results
are known to be the best possible for the trigonometric system. � 1998 Academic Press

1. INTRODUCTION

The paper consists of four sections. The first one contains the basic con-
cepts and results that are used later. In the second one we prove a duality
theorem which plays an essential role in most of the results of the last two
sections. The aim of the third section is to show a general theorem about
the equivalence of strong summability properties of orthonormal systems
and Sidon type inequalities. We also deal with the case of exponentional
summability, that turned out to be the best possible for the trigonometric
and the Walsh systems, and the corresponding Hardy type Sidon
inequality. We show, using the concept of atomic decomposition, that the
latter one can be characterized by two simple properties. Similarly to the
third section the fourth one starts with a general theorem. Namely, we
prove the equivalence of shifted Sidon type inequalities and the rate of con-
vergence of strong oscillations of Fourier series. (The strong oscillation is
defined by the generalized de la Valle� e Poussin means.) Then again we take
the case of Hardy type Sidon inequalities. We identify the basic property of
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strong oscillation that can be considered as the dual of the atomic decom-
position. We show that a number of classical results are straightforward
consequences of this property. We note that our approach provides a
general method for investigating the strong summability and approxima-
tion properties of orthonormal systems. Examples are given after each
theorem. In particular, the reason behind the difference between the strong
summability and approximation properties of the trigonometric and the
conjugate trigonometric Fourier series is very clear from our point of view.

A, C, C1 , C2 will denote positive constants, not necessarily the same in
different occurrences, throughout the paper. It will be clear from the text
on which quantities they do and on which they do not depend.

Lp=Lp[0, 1) (1�p��) will denote the usual Banach space with the
corresponding norm & &p . We shall denote the set of non-negative integers
by N, the set of positive integers by P, and the set of real numbers by R.

Throughout this paper 8 will represent a real orthonormal system with
respect to the Lebesgue integral on [0, 1) whose elements are in L� . For
any f # L1 let S 8f and S 8

n f (n # N) denote the Fourier series and the nth
partial sum of the Fourier series of f (with respect to 8). D8

n stands for the
nth Dirichlet kernel. Then

S 8
n f (x)=|

1

0
f (t) D8

n (x, t) dt (n # N, 0�x<1, f # L1).

Let P8
n (n # P) denote the set of 8 polynomials of order not greater

then n, i.e. the set of linear combinations of the first n elements of 8. The
union of P8

n 's, i.e., the linear hull of 8, is called the set of 8 polynomials.
It will be denoted by P8.

C8 is defined as the closure of P8 in the norm of L� . We note that if
8 is, for instance, the trigonometric system periodic with 1 then C8 is the
set of continuous functions periodic with 1, while if 8 is the Walsh system
then C8 is the space of the so called dyadically continuous functions on
[0, 1) (see, e.g., [17]).

Let Ln stand for the set of dyadic step functions that are constants on
the dyadic intervals [(k&1)2&n, k2&n) (0<k�2n, n # N). The collection
of dyadic step functions, i.e., ��

n=0 Ln , will be denoted by L. The
orthogonal projection En f of L1 onto Ln is defined as

En f (x)=2n |
k2&n

(k&1)2&n
f ((k&1)2&n�x<k2n, 0�k�2n, n # N, f # L1).

X will always represent a Banach space with the following properties

(i) L/X/L1 and & f &1�& f &X ,

(ii) &En f &X�C & f &X (n # N, f # X ).
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We note that, for instance, the Orlicz spaces, especially Lp (1�p��), the
real non-periodic Hardy space (see, e.g., [11] for definition) and the dyadic
Hardy space all satisfy (i) and (ii). The same is true for every dyadic
homogeneous Banach space (see, e.g., [17] for definition). Several other
examples exist.

Y will always denote the space dual to X. Now we show some immediate
consequences of the conditions made for X. First we note that L/Y.
Indeed, for any g # L

Tg f =|
1

0
fg ( f # X )

is a bounded linear functional since g is bounded and by & f &1�& f &X we
have

|Tg f |�&g&�& f &1�&g&�& f &X ( f # X ) .

Furthermore, using this representation we can define the dual norm on L

as

&g&Y=&Tg&= sup
& f &X�1

|
1

0
fg (g # L). (1)

Consequently, we have

} |
1

0
fg }�& f &X &g&Y ( f # X, g # L). (2)

In particular, if g # Ln then the Y norm of g can be calculated as follows

&g&Y= sup
& f &X�1, f # Ln

|
1

0
fg (g # Ln , n # N). (3)

Indeed, by

&En f &X�C & f &X and |
1

0
fg=|

1

0
En fg ( f # L1 , g # Ln) (4)

we obtain from (1) that

&g&Y= sup
& f &X�1

|
1

0
En fg� sup

& f &X�1, f # Ln
|

1

0
fg.

The converse inequality is trivial.
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We note that, however, we will often use indices 2n or j2n in our
theorems and their proofs; the extension of the results for arbitrary indices
is only a matter of technicalities in most of the cases. Whenever this is not
the case we will call attention to that.

2. A DUALITY THEOREM

In this section we show a result that expresses a duality relation.
However, such duality could be formalized in a more general way; the form
we use will be appropriate for our purpose. Namely, we will use it to trans-
form strong summability, approximation properties of Fourier series, and
Sidon type inequalities into each other.

Let 2 denote the operator that associates every r-dimensional real vector
(ck)r

k=1 (ck # R, k, r # N) with a dyadic step function as

2(ck) r
k=1= :

2n

k=1

ck /[(k&1) r&1, kr&1) ,

where /A denotes the characteristic function of the set A/[0, 1).
Let 3k, n (x, } ) be a 8 polynomial for any n # N, 1�k�2n, and 0�x<1.

Set

Tk, n f (x)=|
1

0
f (t) 3k, n (x, t) dt ( f # C8).

Then the aforementioned duality relation is the following.

Theorem 1. Let x # [0, 1) and n # N be arbitrary but fixed. Then

&2(Tk, n f (x))2n

k=1&Y�C & f &� ( f # C8) (5)

if and only if

1
2n " :

2n

k=1

ck3k, n (x, } )"1

�C &2(ck )2n

k=1&X (ck # R, 1�k�2n). (6)

(The constant C is the same in (5) and (6).)

We note that the existence of a constant C>0 for which (5) holds
follows from the definition of Tk, n . The same applies to (6). What
Theorem 1 really shows is that whenever C>0 is a proper constant for (5)
then it is also proper for (6) and vice versa.
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3. STRONG SUMMATION

We start this section with a general theorem about the equivalence of
strong summability of Fourier series and Sidon type inequalities. First we
define the concept of strong summability. Recall that Y is the Banach space
dual to X, and that Y contains the dyadic step functions. Then

&2(S 8
k f (x)& f (x))2n

k=1 &Y ( f # C8, n # N)

is called the 2n th strong Y mean of the Fourier series of f at x. If, for
instance, Y=L1 then it is the 2nth strong Feje� r mean, and if Y=Lp

(1� p<�) then it is the corresponding strong p-adic mean of Sf, i.e.,

&2(S 8
k f (x)& f (x))2n

k=1 &p=\ 1
2n :

2n

k=1

|S 8
k f (x)& f (x)| p+

1�p

.

We shall say that 8 has the strong Y summability property at x if for all
f # C8 we have

lim
n � �

&2(S 8
k f (x)& f (x))2n

k=1&Y=0.

For this it is obviously necessary that the convergence holds for 8 polyno-
mials, i.e.,

lim
n � �

&2(S 8
k .(x)&.(x))2n

k=1&Y=0 (. # 8). (7)

Remark 1. We note that if the norm of Y satisfies

lim
n � �

max
1�k�2n

&/[(k&1)2&n, k2&n)&Y=0 (n # N)

then (7) holds no matter what 8 is. For details see [8].

The following theorem is a consequence of Theorem 1.

Theorem 2. Let x # [0, 1). Then the following two conditions are
equivalent.

(i) 8 has the strong Y summability property at x.

(ii) There exists C such that

1
2n |

1

0 } :
2n

k=1

ck D8
k (x, t) } dt�C &2(ck)2n

k=1&X (ck # R, k, n # N) (8)

and (7) holds for 8.
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Remark 2. Observe that C does not depend on n in (8). In particular,
if (8) holds for every x # [0, 1) with the same C then 8 has the so called
uniform strong Y summability property. In notation

lim
n � �

sup
0�x<1

&2(S 8
k f (x)& f (x))2n

k=1&Y=0 ( f # C8).

Inequalities of the form in (8) are called Sidon type inequalities with
respect to 8. So far they have been mainly used to construct integrability
and L1 -convergence classes for orthogonal series, especially for trigono-
metric series. For the history and summaries on Sidon type inequalities we
refer to [7, 3].

Example 1. Let 1�p<� be fixed and 1�p+1�q=1. Then we have by
Theorem 2 that 8 has the uniform strong Lp summability property

lim
n � �

sup
0�x<1

1
n

:
n

k=1

|S 8
k f (x)& f (x)| p=0 ( f # C8, n # P), (9)

if and only if

1
n |

1

0 } :
n

k=1

ck D8
k (x, t) } dt

�C \1
n

:
n

k=1

|ck |q+
1�q

(0�x<1, ck # R, k, n # P). (10)

For the trigonometric system, (9) was proved by Hardy and Littlewood
[10], and the Sidon type inequality in (10) was proved by Fomin [4] and
Bojanic and Stanojevic� [2] independently. Theorem 2 shows that these
results are dual to each other. Concerning strong summation and
approximation by trigonometric Fourier series we cite the monograph of
Leindler [13] as a general reference.

Now we take the case when X is a Hardy space which is of special inter-
est. Namely, in [14] Schipp pointed out that two properties, that he called
F- and S-properties (Feje� r and Sidon properties), imply a Hardy type Sidon
inequality for the corresponding system. Moreover, as it was proved by
Fridli in [5, 6], it is the best possible Sidon type inequality in a sense for
the trigonometric and Walsh systems. We note that these properties are
fundamental inequalities that have several consequences with respect to the
convergence, summability, and approximation properties of the orthonor-
mal system. Here we only deal with their impact on strong summability
and approximation. For instance we will prove, by using the duality in
Theorem 1, that they imply strong summability of exponential order. We
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also note that in [14] several examples, other then the trigonometric and
the Walsh, are given for systems having the F- and S-properties. Among
them are the so called UDMD and the Ciesielski systems (for definitions
see, e.g., [17, 15].)

The F-property is related to the (C, 1) summability of the Fourier series.
Namely, 8 is said to have the F-property at x # [0, 1) if

1
2n |

1

0 } :
2n

k=1

D8
k (x, t) } dt�C (n # N). (11)

The second one is the shifted version of the original Sidon inequality. We
say that 8 has the shifted S-property at x if

1
2n |

1

0 } :
2n

k=1

ck+lD8
k+l(x, t) } dt�C max

1�k�2n
|ck+l | , (12)

whenever

:
2n

k=1

ck+l=0 (n, l # N).

If such an inequality is required only with l= j2n ( j, n # N) then we say
that 8 has the dyadic shifted S-property at x.

Remark 3. Clearly, the dyadic shifted S-property is weaker than the
shifted S-property. Therefore, whenever it is enough we will only assume
that the system has the dyadic shifted S-property. It is easy to check that
(11) and (12) together imply (11) for every Feje� r kernel, i.e., the index in
(11) is not needed to be dyadic power.

Using the above introduced concepts we have the following result about
their consequence for strong summability.

Theorem 3. Let x # [0, 1). Suppose that 8 has the F- and the dyadic
shifted S-properties at x. Then

lim
n � �

1
n

:
n

k=1

exp(A |S 8
k f (x)& f (x)| )&1=0

for any A>0 and f # C8.

This result was known for the trigonometric system but was quite new
even in that case since it was first proved by Totik in 1980 [17]. From our
approach we have that several other systems have the same approximation
property. Indeed, recall [14] that the trigonometric, the Walsh, the
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Ciesielski, and the UDMD systems all have the F- and dyadic shifted
S-properties uniformly in x. Consequently, by Theorem 3 they all have the
uniform strong exponential summability property.

In the rest of this section we show an example for a converse application
of Theorems 1 and 2. Namely, using the converse Sidon type inequalities
proved by Fridli in [5, 6] and Theorem 2 we will prove that Theorem 3 is
the best possible for the trigonometric and the Walsh systems.

Theorem 4. Let 8 stand for the trigonometric or the Walsh system, and
let � be a monotonically increasing function defined on [0, �) for which
limu � 0+ �(u)=0. Then

lim
n � �

1
n

:
n

k=1

�( |S8
k f (x)& f (x)| )=0 ( f # C8, 0�x<1) (13)

if and only if there exists A>0 such that �(t)�exp(At) (0�t<�).
Moreover, the convergence is uniform in x.

Remark 4. We note that this result was proved by Totik in [17] for
the trigonometric system with the restriction that � is continuous.

Notice that the condition �(t)�exp(At) completely characterizes the
functions for which (13) holds. It is quite surprising for the first look since
exp(A1 t) and exp(A2 t) (A1{A2 , A1 , A2>0) are not of the same order of
magnitude. The condition �(t)�exp(At), however, will come up in a very
natural way in our proof. Namely, it comes from strong Y summability
when Y is an Orlicz space. The point is that the Young functions exp(A1 t)
and exp(A2t) generate equivalent Orlicz norms.

4. STRONG APPROXIMATION

In the first part of this section we show the equivalence of shifted Sidon
type inequalities and strong approximation properties of Fourier series. We
note that the investigation of the problem of strong approximation of tri-
gonometric Fourier series was started by Alexits and Kra� lik [1]. Now we
focus our attention on the rate of convergence of strong Y oscillations of
Fourier partial sums. The reason is that several well known results, for
example, those on the convergence properties of strong de la Valle� e
Poussin means, can be received as consequences of it.

The generalized de la Valle� e Poussin means are defined as

V8
r, n f =

1
r

:
r

k=1

S 8
k+n f (r, n # N, f # C8).
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Let Y be as before. Then

&2(S 8
k+n f (x)&Vr, n f (x))r

k=1&Y (r, n # N, 0�x<1, f # C 8)

are called generalized strong Y oscillations of the Fourier series of f. If, for
instance, Y=Lp (1�p<�) then they are of the form

\1
r

:
r

k=1

|S 8
k+n f (x)&Vr, n f (x)| p+

1�p

.

The error of best approximation of f by 8 polynomials of order at most
n is defined as follows

E8
n f = inf

p # Pn
8

& f & p&� ( f # C 8, n # P).

The following theorem shows how the rate of convergence of strong
oscillations of the Fourier partial sums is connected with shifted Sidon type
inequalities.

Theorem 5. Let 0�x<1 . Then the following two conditions are equiv-
alent.

(i) There exists C such that

1
2n |

1

0 } :
2n

k=1

ckD8
k+ j2n (x, t) } dt

�C &2(ck)2n

k=1&X with :
2n

k=1

ck=0 ( j, n # N).

(ii) There exists C such that

&2(S 8
k+ j2n f (x)&V 8

2n, j2n f (x))2n

k=1 ,&Y�CE 8
j2n f ( f # C8, j, n # N).

The theorem of course remains true if in both (i) and (ii), j2n is replaced
by l # N.

In order that we can use Theorem 5 to deduce estimations for the
generalized strong means, i.e., for

&2(S 8
j2n+k f (x)& f (x))2n

k=1&Y (n # N),

all we need is to estimate | f (x)&V2n, j2n f (x)|. In other words the only
additional information needed is the rate of convergence of generalized de
la Valle� e Poussin means. It is easy to see that an equivalence similar to
Theorem 5 can be established between the rate of convergence of
| f (x)&V2n, j2n f (x)| and the L1 norm of the generalized de la Valle� Poussin
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kernels. We note that the latter one corresponds to the missing case in i)
of Theorem 5, namely to the shifted Sidon type inequality when ck=1
(k=1, ..., 2n). The reason why we separated the cases �2n

k=1 ck=0, and
ck=1 (k=1, ..., 2n) is that the second one is more simple and has a mean-
ing of its own in terms of approximation. Also as it will be seen in
Corollary 2 this way we can handle the trigonometric and the conjugate
trigonometric Fourier series in the same way. The real reason, however, is
the atomic decomposition of Hardy spaces about which more details are
given after Corollary 1.

The 2nth strong de la Valle� e Poussin mean of f at x relative to the Y
norm is defined as

&2(S 8
k+2n f (x)& f (x))2n

k=1&Y (n # N).

In view of the above remarks we have the following corollary of
Theorem 5.

Corollary 1. Let 1�p<� and suppose that the Sidon type inequality
in (10) holds for 8. Then for the rate of approximation of the strong de la
Valle� e Poussin means we have

\1
n

:
n

k=1

|S 8
k+n f (x)& f (x)| p+

1�p

�CE 8
n f (n # P, f # C8).

Now, similarly to the previous section on strong summability, we will
consider the case when 8 satisfies the (dyadic) shifted S property. Recall
that it is of particular importance because it leads to exponential sum-
mability, the best possible for the trigonometric and Walsh systems. We
will show that the shifted S property can be identified with a simple
approximation property of the strong oscillation of Fourier series and has
several consequences.

Let H and H denote the real non-periodic Hardy space and the dyadic
Hardy space respectively. For the definitions and the basic properties of
these spaces we refer to [11, 17]. Schipp [14] introduced the concepts of
the F- and the shifted (or the dyadic shifted) S-properties to prove the
Sidon type inequality (8) with X=H (and with H for the dyadic case). His
proof is based on the atomic decomposition of these Hardy spaces. The F
property corresponds to the constant 1 atom and the shifted S property
corresponds to the other atoms. The advantage of this idea is that the
Hardy type Sidon inequalities can be generated from simple basic
inequalities.
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The dual of H is essentially the space of functions of bounded mean
oscillation denoted by BMO. The space BMO/L1 is the collection of
functions for which

& f &BMO= } |
1

0
f }+ sup

I/[0, 1)

1
|I | |I } f &

1
|I | |I

f }
is finite, where I is an arbitrary subinterval of [0, 1) whose length is
denoted by |I |. For the dyadic Hardy space H the dyadic BMO and its
norm can be defined in a similar way with the only modification that I
should be a dyadic interval.

If we take X=H, H then we have by Theorem 5 that the shifted Hardy
type Sidon inequalities are equivalent with an approximation property of
strong BMO, BMO oscillations. Recall that by the atomic decomposition
of H and H these Sidon inequalities can be reduced to the shifted S
property. Based on the duality in Theorem 5 we identify the corresponding
property of strong approximation in the following theorem.

Theorem 6. The following three conditions are equivalent.

(i) 8 has the uniform shifted S-property.

(ii) There exists C such that

1
r

:
r

k=1

|S 8
k+l f (x)&V 8

r, l f (x)|�CE 8
l f (0�x<1, l, r # N, f # C8).

(iii) There exists C such that

&2(S 8
k+l f (x)&V 8

r, l f (x))r
k=1&BMO

�C E 8
l f (0�x<1, l, r # N, f # C 8).

In the case of the uniform dyadic shifted S-property similar equivalences hold
with indices l= j2n ( j, n # N) in (ii) and in (iii).

The left side of the inequality in (ii) may be called generalized strong
Feje� r oscillation. Theorem 6 shows that the approximation property of the
generalized strong Feje� r oscillation in (ii) generates the seemingly stronger
result, i.e. the same rate of convergence of the generalized strong BMO
oscillation.

We note that a number of results on strong approximation of Fourier
series, many of them classical in the trigonometric case, can be derived
from Theorem 6. Here we only show some examples. In order to deduce
the following corollary from Theorem 6 all we need are some basic proper-
ties of Orlicz norms (see, e.g., [12]) and the well known relation between
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Orlicz norms and the BMO, BMO norms (see, e.g., [9]). The function
.: [0, �) [ R is called a Young function if it is convex, continuous,
limt � 0 .(t)�t=0, and limt � � .(t)�t=�.

Corollary 2. Suppose that 8 has the uniform shifted S-property. Then
the following inequalities hold uniformly in x.

(i) For any 1�p<� we have

\1
r

:
r

k=1

|S 8
k+l f (x)&V 8

r, l f (x)| p+
1�p

�CE 8
l f (0�x<1, r, l # N, f # C 8).

(ii) Let . be a Young function for which .(u)�exp(Au) (u�0) holds
with some A>0. Then there exists C>0 such that

1
r

:
r

k=1

.( |S 8
k+l f (x)&V 8

r, l f (x)| )�CE 8
l f

(0�x<1, r, l # N, f # C8, C& f &��1). If 8 has the uniform dyadic shifted
S-property then the same estimations hold with indices l= j2n and r=2n

( j, n # N).

We note that, besides the examples for systems with the S-property
given before, Theorem 6 and Corollary 2 can also be applied to deduce
approximation properties for the conjugate trigonometric series. Indeed,
Schipp proved in [14] that the complex trigonometric system satisfies the
uniform shifted S-property. Therefore (12) holds for the conjugate tri-
gonometric Dirichlet kernels. Consequently, every strong approximation
property that follows from the S property only will be true not only for the
trigonometric but also for the conjugate trigonometric Fourier series. We
also note that the F-property, i.e., (11), fails to hold for the conjugate
kernels. This makes the difference between the approximation properties of
the trigonometric and the conjugate trigonometric Fourier series.

Example 2. Let S� k f (k # P) denote the kth partial sum of the con-
jugate trigonometric Fourier series and let V� k, n f denote the conjugate
generalized de la Valle� e Poussin means of f # C[0, 1) (k, n # N). We have
by Theorem 6 and Corollary 2 that for any A>0 there exists C>0 such
that

1
n

:
n

k=1

exp(A |S� k+n f (x)&V� n f (x)| )&1

�CEn f (C& f &��1, 0�x<1, n # P).
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(En f denotes the error of best approximation by trigonometric polynomials
of order not greater then n, and V� n f (x) denotes the nth de la Valle� e
Poussin mean of the conjugate trigonometric Fourier series.)

In particular, since f # Lip : (0<:<1) implies &S� k f & f� &��Ck&:

(k # P) we obtain that for any 1�p<� there exists C>0 such that

\1
n

:
n

k=1

|S� k f (x)&f� (x)| p+
1�p

�Cn&: (0�x<1, n # P, f # C[0, 1)).

Similarly, for any A>0 there exists C>0 such that

1
n

:
n

k=1

exp(A |S� k f (x)&f� (x)| )&1�Cn&: (0�x<1, n # P, C& f &��1).

Let us suppose that 8 has also the uniform F-property. Thus the de la
Valle� e Poussin means of the Fourier series converge to the corresponding
function. Taking r=l in Theorem 6 and Corollary 2 we could easily deduct
estimations for the rate of convergence of strong de la Valle� e Poussin
means. Instead, we will show that an even more general result, that con-
tains the strong de la Valle� e Poussin means as special cases, can be derived
from the F- and S-properties. Namely, we have the following theorem a tri-
gonometric version of which was proved in [18].

Theorem 7. Suppose that 8 has the uniform F- and the uniform dyadic
shifted S-properties. Then there exists C>0 such that

(i) &2(S 8
kj

f (x)& f (x))r
k=1&LN

�C \log
2n
r + E 8

k1
f (0�x<1, r, n # P, f # C 8),

where & &LN
is the Orlicz norm generated by the Young function N for which

N(u)=exp u&1 for u great enough, and 0<k1< } } } <kr�n.

(ii) Especially, for any 1�p<�

\1
r

:
r

j=1

|S 8
kj

f (x)& f (x)| p+
1�p

�C \log
2n
r + E 8

k1
f (0�x<1, r, n # P, f # C8)

(0<k1< } } } <kr�n).

275STRONG APPROXIMATION



File: DISTL2 318514 . By:AK . Date:02:07:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 2138 Signs: 914 . Length: 45 pic 0 pts, 190 mm

Finally, we mention a consequence with respect to the strong de la
Valle� e means of the above theorem.

Corollary 3. Suppose that 8 has the uniform F- and the uniform
dyadic shifted S-properties. Let .: [0, �) [ R be a monotonically increasing
continuous function with limu � 0+ .(u)=0 for which there exists A such that

.(u)�exp(Au) (u�0),

and

.(2u)�A.(u) (0<u<1).

Then

1
n

:
2n

k=n+1

.( |S 8
k f (x)& f (x)| )�C.(E 8

n f ) (0�x<1, n # P, f # C8).

We can infer Corollary 3 from part ii) in Theorem 7 by following the
proof of the trigonometric version given by Totik in [19].

5. PROOFS

Proof of Theorem 1. First suppose that

&2(Tk, n f (x))2n

k=1&Y �C & f &� ( f # C8, n # P) .

Then for any real ck 's (1�k�2n) we have by the duality argument and by
(2) that

1
2n |

1

0 } :
2n

k=1

ck3k, n(x, t) } dt= sup
& f &��1

1
2n :

2n

k=1

ck |
1

0
f (t) 3k, n(x, t) dt

= sup
& f &��1

1
2n :

2n

k=1

ckTk, n f (x)

= sup
& f &��1

|
1

0
(2(ck )2n

k=1 )(2(Tk, n f (x))2n

k=1 )

� sup
& f &��1

&2(ck )2n

k=1&X &2(Tk, n f (x))2n

k=1&Y

�C &2(ck )2n

k=1 &X . (14)
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For the proof of the converse direction suppose that

1
2n " :

2n

k=1

ck3k, n(x, } )"1�C &2(ck)2n

k=1 &X

holds for any ck # R (1�k�2n, k, n # P).
Clearly, any function in Ln can be written in the form 2(ck)2n

k=1 with
the proper choice of the ck 's. Therefore, we have by (3) that

&2(Tk, n f (x))2n

k=1&Y= sup
&2(ck)2n

k=1&X�1
|

1

0
(2(Tk, n f (x))2n

k=1 )(2(ck)2n

k=1 )

= sup
&2(ck)2n

k=1&X�1

1
2n :

2n

k=1

ckTk, n f (x)

= sup
&2(ck)2n

k=1&X�1
|

1

0

1
2n :

2n

k=1

ck3k, n(x, t) f (t) dt

�& f &� sup
&2(ck)2n

k=1&X�1

1
2n " :

2n

k=1

ck 3k, n(x, } )"1

�C & f &� .

(15)

The proof of Theorem 1 is complete. K

Proof of Theorem 2. Since

C8
% f � 2(S 8

k f (x)& f (x))2n

k=1 # Y (n # N)

is a sequence of linear operators we have by the Banach�Steinhaus theorem
that 8 has the strong Y summability property at x if and only if (7) holds
and these operators are uniformly bounded. Clearly, the uniform bounded-
ness is equivalent to (5) with Tk, n=S 8

k (1�k�2n, k, n # N) and with
C>0 independent of n. Then by Theorem 1 it is also equivalent to (6),
which is identical to (8) in this case. K

Proof of Theorem 3. Suppose that 8 has the F- and S-properties at an
x # [0, 1). Then as Schipp proved in [14] the following Sidon type
inequality holds true for 8

1
2n |

1

0 } :
2n

k=1

ck D8
k (x, t) } dt�&2(ck)2n

k=1&H (ck # R, k, n # N) .

Recall that H denotes the dyadic Hardy space. Let now M be a Young
function for which M(x)=x log x for large values of x and let the Orlicz
space generated by M be denoted by LM . For the definition and properties
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of Orlicz spaces we refer to [12]. Now we make use of the following rela-
tion between the dyadic Hardy norm and the Orlicz norm & &LM

(see, e.g.,
[16])

&2(ck)2n

k=1&H�C &2(ck)2n

k=1&LM
(ck # R, k, n # N) .

Consequently, in the Sidon type inequality above H can be replaced by
LM . It is known (see, e.g., [12]) that the dual of LM is the Orlicz space
generated by the Young function N(x)=exp x&1 (x�0). Also, it is easy
to check that the Orlicz norms have the property defined in Remark 1 and
so (7) holds for them. Then we have by Theorem 3 that

lim
n � �

&2(S 8
k f (x)& f (x))2n

k=1&LN
=0 ( f # C8). (16)

Using the concept of equivalent Young functions (see [12]) we have that
(16) holds for every Young function of the form N(x)=exp(Ax)&1
(A>0). Since the convergence in Orlicz norm implies the convergence in
mean, that is

lim
n � �

& fn& f&LN
=0 implies lim

n � � |
1

0
N( | fn(t)& f (t)| ) dt=0,

we can conclude that

lim
n � �

1
2n :

2n

k=1

exp(A |S 8
k f (x)& f (x)| )&1=0

for any A>0 and f # C8. K

Proof of Theorem 4. Let � be a monotonically increasing function for
which (13) and limu � 0+ �(u)=0 hold. The ``if '' part of the statement is a
straightforward consequence of Theorem 3.

For the proof of the other part first we suppose that � is continuous and
convex, i.e., � is a Young function. Then in terms of Orlicz spaces (13)
means that 2(S 8

k f (x)& f (x))2n

k=1 tends to 0 in mean as n � �. It is
known that, however, the convergence in mean does not imply the con-
vergence in the corresponding Orlicz norm in general but it does imply the
boundedness. Consequently

sup
n # N

&2(S 8
k f (x))2n

k=1&L�
<� ( f # C 8).

Then we have by the Banach�Steinhaus theorem that the sequence of the
operators

C8
% f � 2(S 8

k f (x))2n

k=1 # L� (n # N)
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is uniformly bounded, i.e.,

&2(S 8
k f (x))2n

k=1&L�
�C& f &� ( f # C8, n # N) .

If | stands for the conjugate Young function of � then we can deduce by
Theorem 1 that the following Sidon type inequality holds true

1
2n |

1

0 } :
2n

k=1

ck D8
k (x, t) } dt�C &2(ck)2n

k=1&L|
(ck # R, n # N).

In [5, 6] Fridli proved the following converse Sidon type inequality

max
p # 6n

1
2n |

1

0 } :
2n

k=1

cpk
D8

k (x, t) } dt�C &2(ck)2n

k=1 &LM
(ck # R, n # N),

where M(x)=x log x for large values of x and 6n denotes the set of per-
mutations of the set [1, ..., 2n] (n # N). Since the Orlicz norms are
rearrangement invariant we have from this result that

&h&LM
�C &h&L|

(17)

for every dyadic step function h. M satisfies the so called 22 condition, i.e.,
M(2x)�CM(x) for large values of x. Therefore, the set of dyadic step func-
tions is dense in LM . Consequently, (17) holds for every f # LM . This
implies the converse relation between the dual norms, i.e.,

& f &L�
�C & f &LN

( f # L�),

where N(x)=exp x&1 (x�0). It is known that this can only be true
(see, e.g., [12]) if � P N. The partial ordering P in the set of Young
functions is defined as follows. For two Young functions M1 and M2 we
have M1PM2 if and only if there exist A>0 and u0>0 such that
M1(u)�M2(Au) (u>u0) .

Applying it to our case we can conclude that there exists A>0 such that

�(u)<exp(Au) (x�0),

i.e., we proved the theorem in case when � is a Young function.
In order to finish the proof let us suppose that � is a monotonically

increasing function with limu � 0+ �(u)=0 that does not satisfy the condi-
tion of the theorem. Namely, we suppose that for any A>0 there exists
s>0 for which �(s)>exp(As) holds. Let us take the integral function
of - �

�(u)=|
u

0
- �(t) dt (u�0).
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Thus � is a Young function and it follows from the definition that

�(u)�u - �(u), �(u)�
u
2 �� \u

2+ (u�0). (18)

Since for any A>0 there exists s>0 such that �(s)>exp(As), where we
may suppose that s>2, we have by the second inequality in (18) that
�(2s)>exp((A�2)s). That is, � does not satisfy the condition which was
proved to be necessary to (13) for Young functions. Therefore, there exists
f # C8 such that

lim sup
n � �

1
2n :

2n

k=1

�( |S 8
k f (x)& f (x)| )>0. (19)

By Cauchy's inequality and by the first part of (18) we have that

1
2n :

2n

k=1

�( |S 8
k f (x)& f (x)| )

�\ 1
2n :

2n

k=1

|S 8
k f (x)& f (x)|2+

1�2

\ 1
2n :

2n

k=1

�( |S 8
k f (x)& f (x)| )+

1�2

.

The first factor of the right side tends to 0 as n � � since both the tri-
gonometric and the Walsh systems have the uniform strong Y summability
property with Y=L2 . Consequently, by (19) we have

lim sup
n � �

1
2n :

2n

k=1

�( |S 8
k f (x)& f (x)| )=�.

The proof of the theorem is complete. K

Proof of Theorem 5. We can follow the proof of Theorem 1. Namely, let
0�x<1 and j, n # N. Set 3k, n=D8

j2n+k (1�k�2n). First we suppose that
(ii) holds, i.e.,

&2(S 8
j2n+k f (x)&V 8

2n, j2n f (x))2n

k=1&Y�CE 8
j2n f ( f # C8) .

Then (i) follows by (14) and by considering that in this case

:
2n

k=1

ck Tk, nf (x)= :
2n

k=1

ck (S 8
j2n+k f (x)&V 8

2n, j2n f (x))

whenever �2n

k=1 ck=0.
For the proof of the other direction observe that

|
1

0
2(S 8

j2n+k f (x)&V 8
2n, j2n f (x))2n

k=1=0 ( f # C8)

280 FRIDLI AND SCHIPP



File: DISTL2 318519 . By:AK . Date:02:07:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 2752 Signs: 1351 . Length: 45 pic 0 pts, 190 mm

and

"2 \ck&2&n :
2n

j=1

cj+
2n

k=1"X
�&2(ck)2n

k=1&X+&E0 (2(ck)2n

k=1 )&X

�2 &2(ck)2n

k=1&X (ck # R, 1�k�2n).

Then similarly to (15) we obtain

&2(S 8
j2n+k f (x)&V 8

2n, j2n f (x))2n

k=1 &Y

�2 sup
&2(ck)2n

k=1
&X�1

1
2n :

2n

k=1

ck (S 8
j2n+k( f &g)(x)&V 8

2n, j2n( f &g)(x))

(g # P
8
j2n),

where �2n

k=1ck=0 . Thus the last sum reduces to

:
2n

k=1

ck S 8
j2n+k( f &g)(x)

and we can finish the proof as for Theorem 1. K

Proof of Theorem 6. The proof will be presented for the dyadic case.
Namely, we suppose that l= j2n and r=2n for some j, n # N. Recall that
the F- and the dyadic shifted S-properties imply the Sidon type inequality
in (8) with X=H. The proof (see [14]) is based on the concept of atomic
decomposition for the dyadic Hardy space H. In term of atoms the
F-property corresponds to the constant 1 atom. Excluding it and using the
same idea as in [14] we deduce that the uniform dyadic shifted S-property
is equivalent to (i) in Theorem 6 uniformly in x. Then it follows from the
duality between H and BMO, and from Theorem 5 that (i) is equivalent
to (iii).

By definition we have that &h&1�&h&BMO (h # BMO). Consequently, (iii)
implies (ii). On the other hand, if (ii) holds then using the definition of the
BMO norm again we obtain

&2(S 8
j2n+k f (x)&V 8

2n, j2n f (x))2n

k=1&BMO

= max
j2n�i2s<( j+1)2n

1
2s :

2s

k=1

|S 8
i2s+k f (x)&V 8

2s, i2s f (x)|

�C max
j2n�i2s<( j+1)2n

E 8
i2s f =CE 8

j2n f ( j, n # N, f # C8),

i.e., (ii) implies (iii).
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We note that for the proof of the case of the shifted S-property one has
to take the corresponding properties of H and BMO and to use the
extended version of Theorem 5 to arbitrary indices. K

Proof of Theorem 7. Again we will use the F- and S-properties to
conclude

1
2l |

1

0 } :
2l

k=1

dk D8
k (x, t) } dt�C &2(dk)2l

k=1&H (0�x<1, dk # R, k, l # P).

Recall that & f &H�C& f &LM
( f # LM) where M(x)=xlog x for x great

enough. On the other hand (see, e.g., [5])

& f &LM
r|

1

0
| f | \1+log+ | f |

& f &1+ ( f # LM , f �0).

Consequently,

|
1

0 } :
2l

k=1

dk D8
k (x, t) } dt�C :

2l

k=1

|dk | \1+log+ |dk |

2&l �2l

j=1 |d j |+
(0�x<1, dk # R, k, l # P).

Let 0<k1<...<kr�n (r, n # P). Define N and K by 2N&1<n�2N and
2K&1<r�2K . Set

3j, K={D8
kj

0,
j=1, ..., r
j=r+1, ..., 2K.

Thus

1
2K |

1

0 } :
2K

j=1

cj3j, K (x, t) } dt

=
1

2K |
1

0 } :
r

j=1

cjDkj
(x, t) } dt

�C
1

2K :
r

j=1

|cj | \1+log+ |cj |
2&N �r

j=1 |c j |+
�C

1
2K \ :

2K

j=1

|cj | \1+log
2N

2K++ :
2K

j=1

|cj | \1+log+ |cj |

2&K �2K

l=1 |cl |++
�C log

2n
r

&2(cj)
2K

j=1 &LM
.
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Then we have by Theorem 1 that

" :
r

j=1

(S 8
kj

f (x)& g(x))/[( j&1)2&K, j2&K )"LN

�C log
2n
r

& f& g&� (g # P8
k1

),

where N(u)=exp u&1 for u great enough.
The proof can be completed by using simple properties of Orlicz

norms. K
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